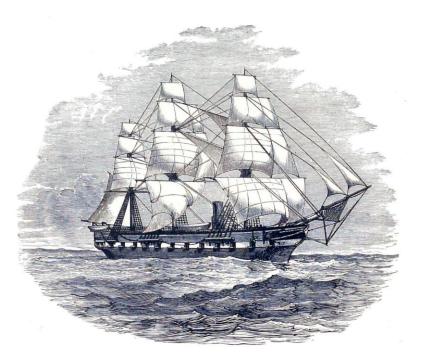
Ocean Data Collection: Measurement methods and Data Quality

October, 2017

Walt McCall

wmccall@blueoceanmonitoring.com


Progression of Observations

- Vessels: 1700s
- Buoys: 1940s
- Satellite and Aircraft 1960s
- AUV 1980s
- USV & UUV 1990s

Vessels

- Only option available at the time
- Could cover Ocean basins and large transects quickly
- Lacked time series capabilities. (tried but dangerous and expensive).
- Lead to development of Ocean Buoys

Buoys

- Weather ships in the early 1930s to alert pilots of bad weather.
- Expensive and loss of crews.
- Nomad buoy developed in 1940s.
- Provided cheap long term time series datasets.


AUV

- Originated from desire to decouple tow bodies
- Increased survey resolution and speed.
- Great high resolution bathymetry and precision surveys.

USV & UUV

- General autonomous category.
- Allow for oceanographic collection in remote areas
- Can be used as standalone system or compliment vessel missions



About Blue Ocean Monitoring

- Largest commercial operator of gliders in the world.
- Focused on high quality environmental and geochemical data collection
- Pushing the boundaries for sensor size, endurance, and speed.

Importance of Real-Time Data and Data Quality

- Provide accurate information to warn and alert of high winds and waves.
- Validate modeling and Ground Truth Satellites

Message Length

Payload: Satellite: BCH Address:	46047 1 180 W 460 B15A90E6 SXUS70 KWAL 241254
Msg Date: 03/24/2011 Meas Date: 03/24/2011 DAMS Quality:	12:54:25 B15A90E6 083125425"27037 1250 46047 46/// (096024(/105024) 10131
Status:	G WWW095024(104024)W086027(099027)W071025(087026)W067024(083024)W06 8021(084022)W073018(088019)W08704131(10304331)W077023(091024)W007 (007) G45722N323996W119540312 CCC283(283)C298(297)C158(168)
	BI1479/1271/0000/0000/1250/1275 SP20000 SP30000 DFFFFF GGG0040(0040) ADCP w•X@P@FD`AM@Hx@D@ER@YPA@@@PGDaA@CTDDIX@P@[@@`E@BPCPAp@BLa @@
	NxD_SuOBQ1F@PTr@LL@Wp@@@INW `d@@@@@@@@@@@@@@@BpLXCB1pDP@@@MxEE` Cm_@G•Cp@c@EHE@@@@CAXU_ZIdTUIb`y @@PBHw}S\B@@@[`T@@@@TBpLXCB1pDP@ ANo} @@P@•o•i•v@@APC •q@@f0 @@@T@h•~N••o•@pcQ•xC•• B@@L@Zo @@@X@
	• }H•pD@@`C{•rc•@P@K@N_•@• @@@D@z••f•o{•A@Cd•sc•~ H@Lo•fo•z•q@@y o~t••••Ap@E@FO••_•{•pd@To• •pT@BpBA•~{•A`@@@gq ^wq•`G}•\GAq^w q{^gi _Gmz_Giy^Wew]GIx]GIs\gey^Gaz]w]x\wEo]FmkZFup\V}m[FeeZfIbWFL @@x~QdYNNdH~Q[Fym[uq\WFAVVE][TEIQUDeKRTq@PC}CNst~Oc}@PDH OSp~LsTt
	Ms@slsPrMCLuKs@olbhlJrt@A@@@FL@@@Ad@@@@Y@@@@FL@@@Ac@@@@&`@@@v@@@ @I`@@@CX@@@@FL@@@Ad@@@AX`@@@f@@@@Ia@`@CWaP@BTXkPKZR WP9~OjIKbdcKtqkcK{]

GOOD MESSAGE

Message Length

			A TIME OF ALL TANK
Payload:		46047	1
Satellite:		180 W	395
BCH Address:		B15A90E6	SXUS70 KWAL 241454
Msg Date:	03/24/2011	14:54:25	DISTORED 241404
Meas Date:	03/24/2011	15:00:00	SXUS70 KWAL 241454 B15A90E6?083145425"29028 1450 46047 46/// /152011(/156011) 10131 30179(3px <ul0#~b~fe7ted wgomgmumofn`uffnwdofool•lglmem~w< td=""></ul0#~b~fe7ted wgomgmumofn`uffnwdofool•lglmem~w<>
DAMS Quality:		39-0NP	301/9(3px <ulo#~p~ie td="" ted wgomgmumoen="" uienwdoiooi•igimem~w<=""></ulo#~p~ie>
Status:		P	

LHLMloufJaofMV

DhionCulbGGnJ~"LcDolC_fCCefC\ FcNgDm}NkleFl~"dlogfD]ddmOlFt feAEmE}LnFmOMTNegMDgeoudOagFeGMV NaLmdJWlinGd@t oO`}Ee`Tu8`GNEO FMddFD(LnNHdelDOu4 dDO]dNeT NaJUfCi\<fcKul`C~_4 lc@dzlMMdZoEEepOdkBPDeIjRFLbg}OOgMdU NmOhfW3 19} 2eEMG GGe`tU ;4/*'7=;;5:55-12-7&4 ?7 45 3 '=/ \$?= = /? ;I=?9% .(?1?) 7 ? \pm ?=5 ?5 =? 5?;79'6?; 57 2-8 756 57 9+5? 6 \$%9 65?.1 %72;=755/=uI%)L 2\"\ 5 <@ x+PEYL3t1L*e"7'}v['YZ•j[Qq5zz Wk 39-ONP 180W</pre>

How to automate message check

- USE ENDING CHARATERS
- >>> OR ~~~

• CRC checksums work as well

Transmission Checks

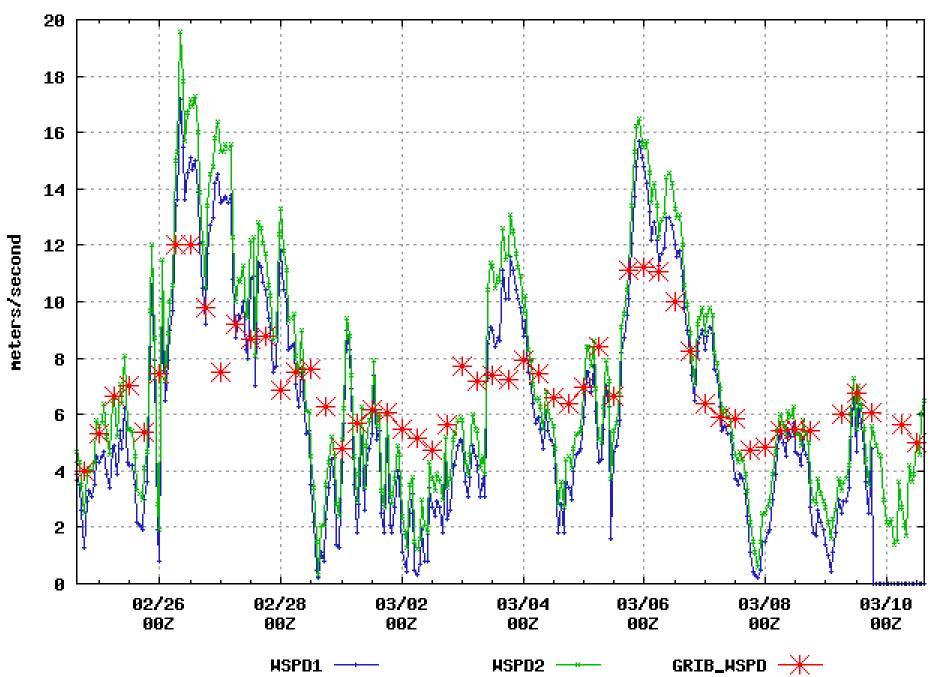
- Try and decode simple data.
- DO NOT RELEASE Binary data (I.E. waves, ADCP)

Range Checks

- Physically Impossible Ranges
- Take sensor range from manufacturer 1
- Can be used to catch drift.

80 60 40 Degrees Celsius 20 Ø 大大 大 -20 -40 02/03 02/10 00Z 02/04 02/05 02/06 02/07 02/08 02/09 00Z 00Z 00Z 00Z 00Z 00Z 00Z

NDBC Time Series Plots - Station FILA2

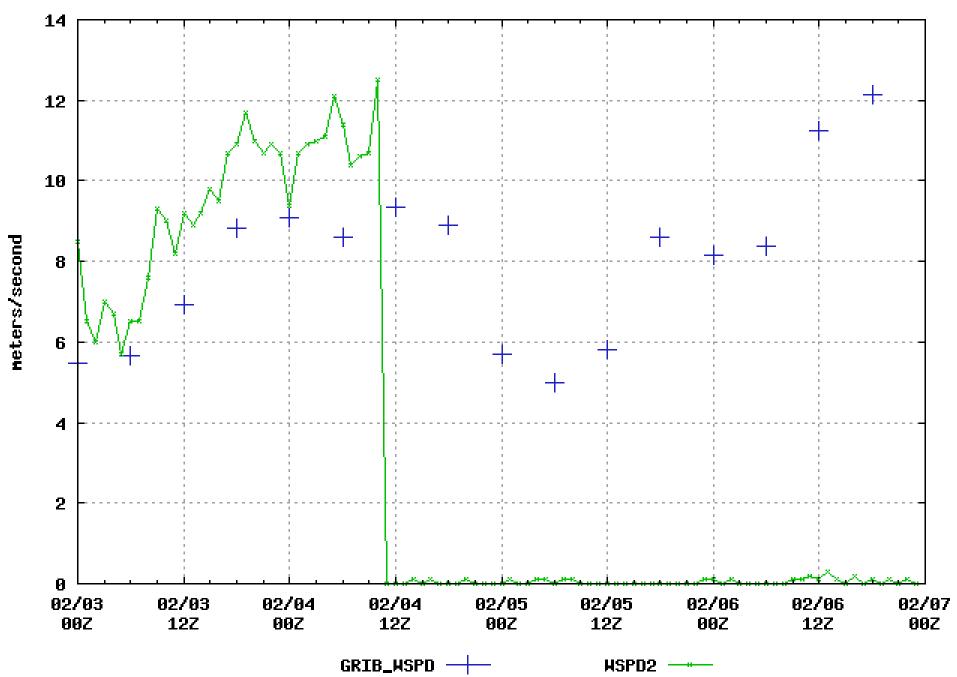

DEMPT1 — DEMPT2 -

Wind Direction

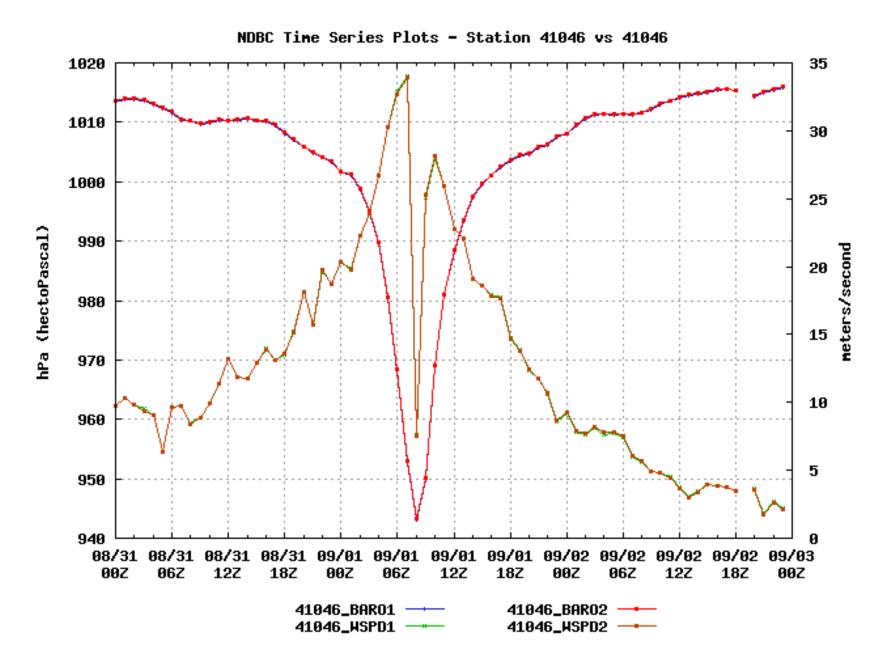
DELTA_WDIR = ABS(WDIR1 – WDIR2) DELTA_WDIR1 = ABS(WDIR1(i) – WDIR1(i-1)) DELTA_WDIR2 = ABS(WDIR2(i) – WDIR2(i-1))

IF WSPD1 and WSPD2 > 2.5m/s && DELTA_WDIR >25 RELEASE WDIR WITH SMALLEST DELTA.

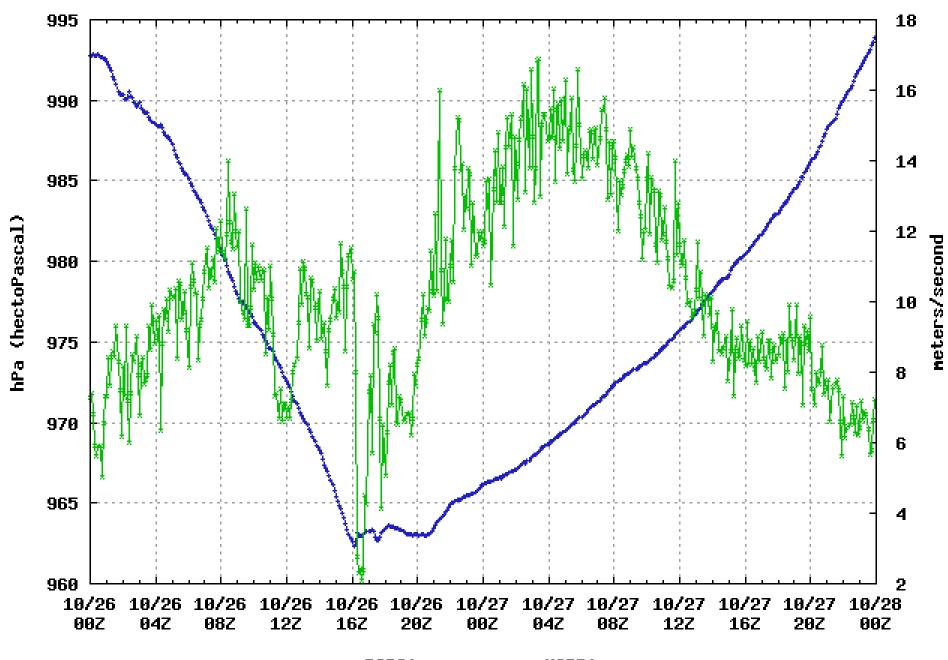
CODING


IF VAL(i) & VAL(i-1)... VAL(i-n) DO NOT RELEASE FLAG STUCK SENSOR

TIME CONTINUITY (NDBC)

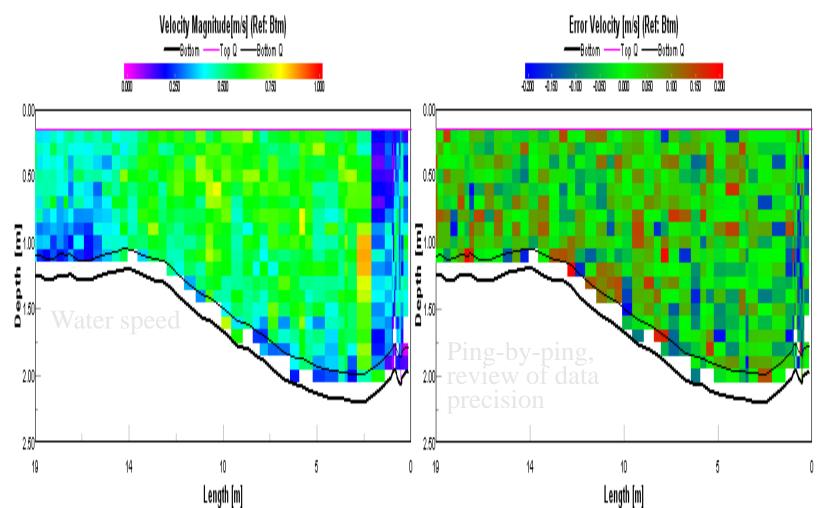

- V(t) = .58*Sigma*(t)^1/2
- Sigma is standard deviation determined from climatology + 50%.
- OR Sigma 3-4 Standard Deviations
- If not using seasonal values Sigma is constant.

.58*Sigma = .58*constant = C



Wind Speed and Barometer

BAR01 — HSPD1 —

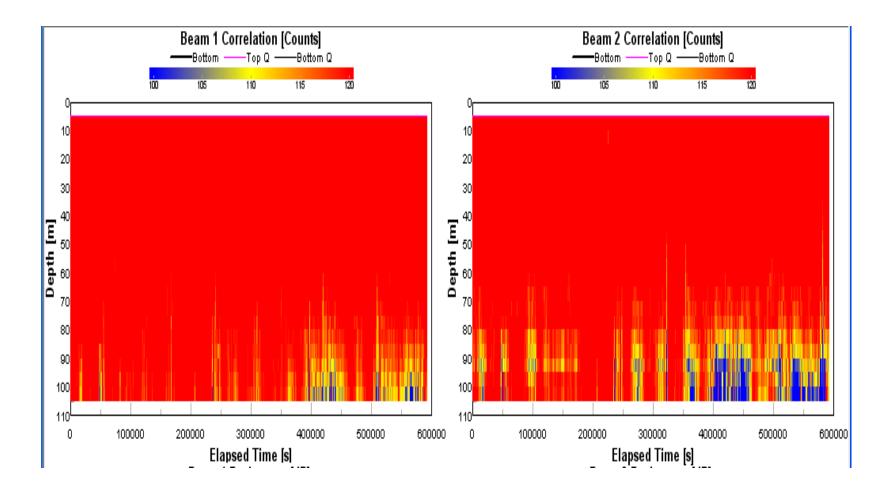

ADCP - Error Velocity

- Measures variability of velocity data
- Provides a far more sensitive screen for data quality than can be achieved by inspecting echo intensity
- Screens <u>each ping</u> for unacceptable noise in the data

 (e.g., due to fish, turbulence, or eddy variability), maximizes the volume of high
 quality signal recorded
- Detects consistent obstructions from solid scatterers (causing bias in the data)

ADCP - Error Velocity

- < 15cm/s Good (release)
- 15-30cm/s Suspect
- >30cm/s Bad

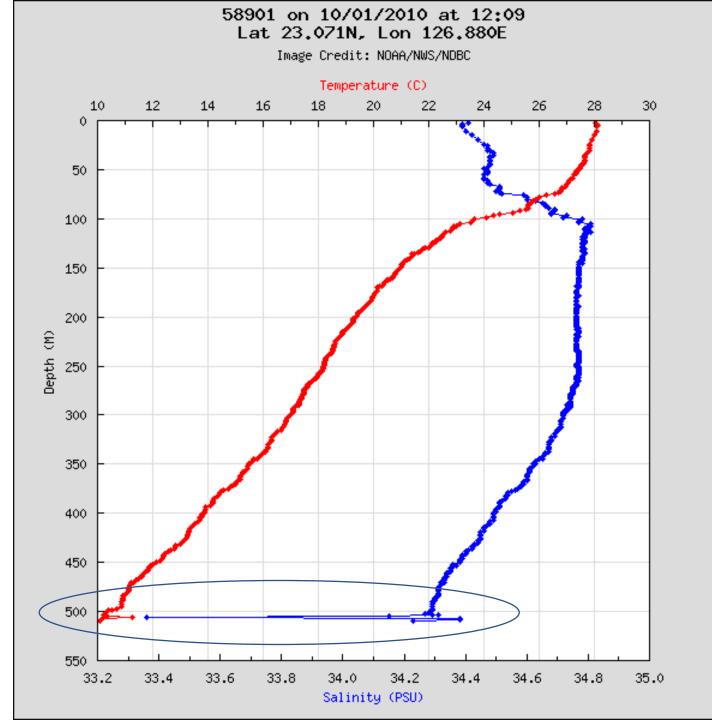


ADCP – Correlation Magnitude

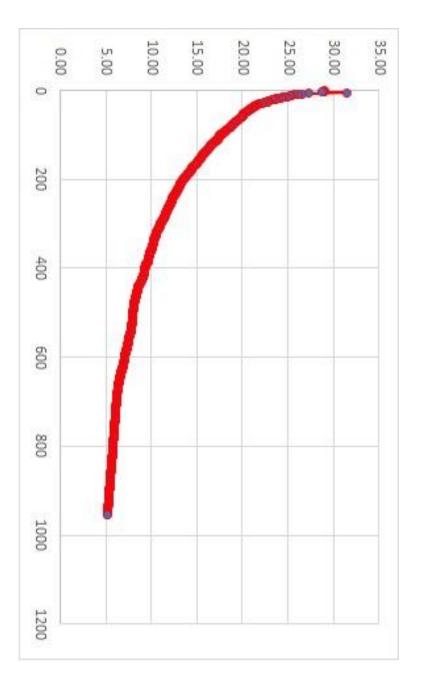
- Helps Determine consistency of measurement.
- Low signal-to-noise ratio in returned echo
- Too much variability in the velocity signal returned from depth cell
 - Rapidly varying scatterers
 - Diverse Doppler shifts

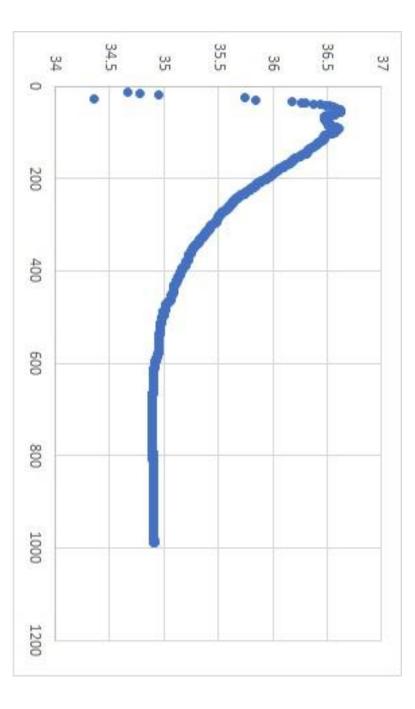
ADCP – Correlation Magnitude

• 75KHz - >= 64 - 3 beams (release)

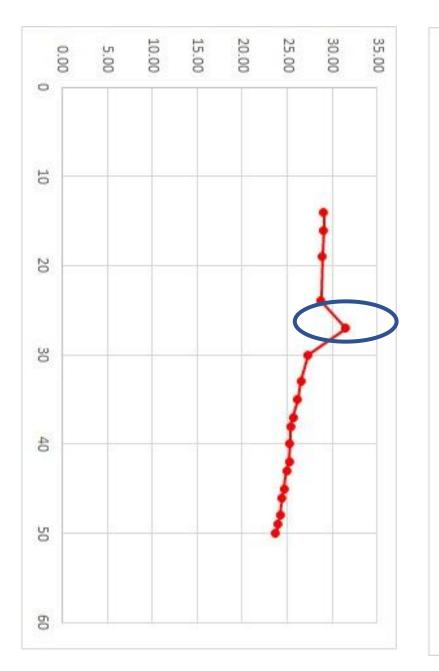


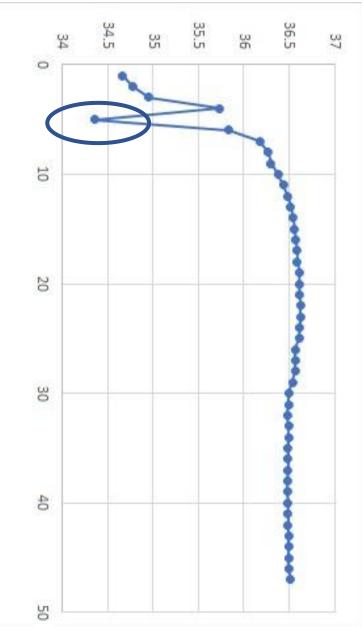
T,S Profile QC


- Follow Global Temperature Salinity Profile Program (GTSPP) guidelines.
- Check Time is within 10 days
- Remove duplicate depths
- Run range check
- Spike Check and Time Continuity check.


Example

- Spike at 500m on Temperature and Salinity
- Good or Bad?


GTSPP



GTSPP Spike

Temperature Change = 2.8 Salinity Change = 1.4

GTSPP Spike

- |V2 (V3+V1)/2|-|V1-V3|/2 > Threshold
- V1 = 28.75
- V2= 31.54
- V3=27.35
- |31.54 28.05| .7 = 3.49 .7 = 2.79 > 2
- Do not release

Thanks!

- Marinha do Brazil/CHM
- NOAA/National Data Buoy Center
- Teledyne RDI Paul Devine
- Blue Ocean Monitoring Ben Hollings

Resources for Real time Data Quality

- <u>http://www.ndbc.noaa.gov/NDBCHandbookofAutomatedDataQuality</u> <u>Control2009.pdf</u>
- RTQC Temperature and Salinity Profiles
- <u>https://www.nodc.noaa.gov/GTSPP/document/qcmans/MG22rev1.p</u> <u>df</u>